Some variational principles for nonlinear elastodynamics
نویسندگان
چکیده
منابع مشابه
Variational Principles for Some Nonlinear Wave Equations
Generally speaking, there exist two basic ways to describe a physical problem [1]: (1) by differential equations (DE) with boundary or initial conditions; (2) by variational principles (VP). The VP model has many advantages over its DE partner: simple and compact in form while comprehensive in content, encompassing implicitly almost all information characterizing the problem under consideration...
متن کاملVariational Principles for Eigenvalues of Nonlinear Eigenproblems
Variational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert spaceH. Bounds for eigenvalues, comparison theorems, interlacing results and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalization of these principles to families of linear, self-adjoint operators depending ...
متن کاملGeneralized Variational Principles on Oscillation for Nonlinear Nonhomogeneous Differential Equations
and Applied Analysis 3 Lemma 2.1 see 10 . Suppose that X and Y are nonnegative. Then λXYλ−1 −X ≤ λ − 1 Y, λ > 1, 2.1 where the equality holds if and only if X Y . Now, we will give our main results. Theorem 2.2. Assume (S2) holds. Suppose further that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2 such that e t ⎧ ⎨ ⎩ ≤ 0, t ∈ s1, t1 , ≥ 0, t ∈ s2, t2 . 2.2 Let u ∈ C1 si, ti , and nonnegative...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Convergence of variational approximation schemes for elastodynamics with polyconvex energy
We consider a variational scheme developed by S. Demoulini, D. M. A. Stuart and A. E. Tzavaras [Arch. Rat. Mech. Anal. 157 (2001)] that approximates the equations of three dimensional elastodynamics with polyconvex stored energy. We establish the convergence of the time-continuous interpolates constructed in the scheme to a solution of polyconvex elastodynamics before shock formation. The proof...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1967
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1967.103076